1,molybdenum disulfide:lead grey powder
2,Package:50kg/drum
3,D50um :<1.5um
4,MOQ:10kg
Molybdenum disulfide
is the inorganic compound with the formula MoS
2
. This black crystalline sulfide of molybdenum occurs as the mineral molybdenite. It is the principal ore from which molybdenum metal is extracted. The natural amorphous form is known as the rarer mineral jordisite. MoS
2
is less reactive than other transition metal chalcogenides, being unaffected by dilute acids. In its appearance and feel, molybdenum disulfide is similar to graphite. Indeed, like graphite, it is widely used as a solid lubricant because of its low friction properties, sometimes to relatively high temperatures.
Summary
:High Pure Molybdenum Disulfide is in lead gray powder,dissolved in aqua regia,hot nitric acid and concentrated nitric acid,insoluble in water, dilute sulfuric acid and organic solvents. its chemical stability is good.
Application
: producing Molybdenum compounds,solid lubricants and the additive of various kinds of lubricants.
Package
:Iron drum. 50kg/drum. Inner packing is in two plastic bags,earch one is 25kg/bag.
Feature
:
purity
99.9%max
low oil
0.05%min
moisture
0.05%min
Friction factor
0.05-0.09
Production
Molybdenite ore is processed by flotation to give relatively pure MoS
2
, the main contaminant being carbon. MoS
2
also arises by the thermal treatment of virtually all molybdenum compounds with hydrogen sulfide. Molybdenite is the principal ore from which molybdenum metal is extracted.
[edit] Structure and physical properties.
In MoS
2
, each Mo(IV) center is trigonal prismatic, being bound to six sulfide ligands, each of which is pyramidal. The trigonal prisms are interconnected to give a layered structure, wherein molybdenum atoms are sandwiched between layers of sulfur atoms. Because of the weak van der Waals interactions between the sheets of sulfide atoms, MoS
2
has a low coefficient of friction, resulting in its lubricating properties. Other layered inorganic materials exhibit lubricating properties (collectively known as solid lubricants or dry lubricants) including graphite, which requires volatile additives, and hexagonal boron nitride.
MoS
2
is diamagnetic and a semiconductor.
Chemical properties
Molybdenum disulfide is stable in air or oxygen at normal conditions, but reacts with oxygen upon heating forming molybdenum trioxide:
2 MoS
2
+ 9 O
2
→ 2 MoO
3
+ 4 SO
3
Chlorine attacks molybdenum disulfide at elevated temperatures to form molybdenum pentachloride:
2 MoS
2
+ 7 Cl
2
→ 2 MoCl
5
+ 2 S
2
Cl
2
Molybdenum disulfide reacts with alkyl lithium under controlled conditions to form intercalation compounds Li
x
MoS
2
. With butyl lithium, the product is LiMoS
2
.
Use as lubricant
MoS
2
with particle sizes in the range of 1-100 µm is a common dry lubricant. Few alternatives exist that can confer the high lubricity and stability up to 350 °C in oxidizing environments. Sliding friction tests of MoS
2
using a pin on disc tester at low loads (0.1-2 N) give friction coefficient values of <0.1
Molybdenum disulfide is often a component of blends and composites where low friction is sought. A variety of oils and greases are used, because they retain their lubricity even in cases of almost complete oil loss, thus finding a use in critical applications such as aircraft engines. When added to plastics, MoS
2
forms a composite with improved strength as well as reduced friction. Polymers that have been filled with MoS
2
include nylon (with the trade name Nylatron), Teflon, and Vespel. Self-lubricating composite coatings for high-temperature applications have been developed consisting of molybdenum disulfide and titanium nitride by chemical vapor deposition.
Specific uses
MoS
2
is often used in two-stroke engines; e.g., motorcycle engines. It is also used in CV and universal joints. During the Vietnam War, the molybdenum disulfide product "Dri-Slide" was used to lubricate weapons, although it was supplied from private sources, not the military. MoS
2
-coatings allow bullets easier passage through the rifle barrel causing less barrel fouling allowing the barrel to retain ballistic accuracy much longer.
[8]
This resistance to barrel fouling comes at a cost of slower muzzle velocity with the same load due to a decreased chamber pressure. MoS
2
is applied to bearings in ultra-high vacuum applications up to 10
−9
torr (at -226 to 399°C). The lubricant is applied by burnishing and the excess is wiped from the bearing surface.
Use in petrochemistry
Synthetic MoS
2
is employed as a catalyst for desulfurization in petroleum refineries; e.g., hydrodesulfurization.
[10]
The effectiveness of the MoS
2
catalysts is enhanced by doping with small amounts of cobalt or nickel and the intimate mixture is supported on alumina. Such catalysts are generated in situ by treating molybdate/cobalt or nickel-impregnated alumina with H
2
S or an equivalent reagent.
Future Developments
Lubrication
There are currently no clear lubrication alternatives to molybdenum disulfide or the very similar tungsten disulfide that can resist temperatures higher than 350°C in oxidizing environments. Research has been conducted on compacted oxide layer glazes, which form during metallic surface sliding wear at several hundred degrees Celsius. However, because these oxide layers are physically-unstable, their use has currently not proven practical.
Photocatalyst
When combined with cadmium sulfide, MoS
2
increases the rate of photocatalytic hydrogen production
No comments:
Post a Comment